Vacuolar calcium channels.

نویسندگان

  • I I Pottosin
  • G Schönknecht
چکیده

The central vacuole is the largest Ca2+ store in a mature plant cell. Ca2+ release from this store contributes to Ca2+-mediated intracellular signalling in a variety of physiological responses. However, the routes for vacuolar Ca2+ release are not well characterized. To date, at least two voltage-dependent and two ligand-gated Ca2+-permeable channels have been reported in plant vacuoles. However, the so-called VVCa (vacuolar voltage-gated Ca2+) channel most probably is not a separate channel but is identical to another voltage-dependent channel-the so-called SV (slow vacuolar) channel. Studies in the last few years have added a new dimension to our knowledge of SV channel-mediated ion transport and the mechanisms of its regulation by multiple natural factors. Recently, the SV channel was identified as the product of the TPC1 gene in Arabidopsis. In contrast, the TPC1 channel from other species was thought to be localized in the plasma membrane. A re-evaluation of this work under the assumption that the TPC1 channel is generally a vacuolar channel provides interesting insights into the physiological function of the TPC1/SV channel. Considerably less is known about vacuolar Ca2+ channels that are supposed to be activated by inositol 1,4,5-trisphosphate or cADP ribose. The major problems are controversial reports about functional characteristics, and a remarkable lack of homologues of animal ligand-gated Ca2+ channels in higher plants. To help understand Ca2+-mediated intracellular signalling in plant cells, a critical update of existing experimental evidence for vacuolar Ca2+ channels is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-Activated K+ Channels and Calcium-Induced Calcium Release by Slow Vacuolar Ion Channels in Guard Cell Vacuoles Implicated in the Control of Stomatal Closure.

Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...

متن کامل

Calcium-Activated K+ Channels and Calcium-lnduced Calcium Release by Slow Vacuolar lon Channels in Guard Cell Vacuoles lmplicated in the Control of Stomatal Closure

Stomatal closing requires the efflux of K+ from the large vacuolar organelle into the cytosol and across the plasma membrane of guard cells. More than 90% of the K+ released from guard cells during stomatal closure originates from the guard cell vacuole. However, the corresponding molecular mechanisms for the release of K+ from guard cell vacuoles have remained unknown. Rises in the cytoplasmic...

متن کامل

Calcium Signals from the Vacuole

The vacuole is by far the largest intracellular Ca(2+) store in most plant cells. Here, the current knowledge about the molecular mechanisms of vacuolar Ca(2+) release and Ca(2+) uptake is summarized, and how different vacuolar Ca(2+) channels and Ca(2+) pumps may contribute to Ca(2+) signaling in plant cells is discussed. To provide a phylogenetic perspective, the distribution of potential vac...

متن کامل

A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane.

The molecular identification of ion channels in internal membranes has made scant progress compared with the study of plasma membrane ion channels. We investigated a prominent voltage-dependent, cation-selective, and calcium-activated vacuolar ion conductance of 320 pS (yeast vacuolar conductance, YVC1) in Saccharomyces cerevisiae. Here we report on a gene, the deduced product of which possesse...

متن کامل

Two Voltage-Gated, Calcium Release Channels Coreside in the Vacuolar Membrane of Broad Bean Guard Cells.

Voltage-gated, Ca2+ release channels have been characterized at the vacuolar membrane of broad bean guard cells using patch clamps of excised, inside-out membrane patches. The most prevalent Ca2+ release channel had a conductance of 27 pS over voltages negative of the reversal potential (Erev) (cytosol referenced to vacuole), with 5,10, or 20 mM Ca2+ as the charge carrier on the vacuolar side a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 58 7  شماره 

صفحات  -

تاریخ انتشار 2007